NOVOSENSE

0

NSM2032/33/20 Programmer User Guide AN-12-0018

Author: Haijun Cao

ABSTRACT

NOVOSENSE

Core-based Linear hall sensor is that a concentrator core focuses magnetic flux lines, which are generated by electrical current flowing through a conductor, at the center of the air gap, where the Hall magnetic sensor IC is positioned.

The customer can calibrate the sensitivity or offset of the sensor by adjusting the relevant registers in the chip.

NOVOSENSE Microelectronics provides calibration hardware platform and software operation greatly facilitate customer development.

INDEX

1. HARDWARE 2						
1.1 FUNCTION OVERVIEW	2					
2. SOFTWARE INSTALL 3						
2.1 SOFTWARE INSTALLATION ENVIRONMENT	3					
2.2 PATH OF GUI	4					
3. SOFTWARE 4						
3.1 CALIBRATION PROCEDURE [NSM2032]	4					
3.2 CALIBRATION PROCEDURE [NSM2033/NSM2020]	6					
4. REVISION HISTORY 8						

1.Hardware

1.1Function Overview

The NSM2032/NSM2033/NSM2020 user sensitivity programmable function can be achieved by controlling the NSM2032/NSM2020 configuration calibration related registers through the Aries-1 series controller board and programmer software.

Figure 1. 3D schematic of Controller board

In Figure1,

1: USB Power port , connected with PC.

2 : the function expansion port of the controller board is connected to the device(NSM2032/NSM2033/NSM2020), as shown in Figure 2.

AN-12-0018 NSM2032/33/20 Programmer User Guide

Figure 2. Connection diagram of Controller board with NSM2032/NSM2033/NSM2020 device

2.Software Install

2.1 Software Installation Environment

- NI LabVIEW 2019 and above
- NI VISA 19.0 and above

NOVOSENSE

2.2 Path of GUI

> 此电脑 → Data (D:) → NSM2032_Programmer GUI_V1.0 → NSM2032_Programmer						
		修改日期	类型	大小		
	늘 ConfigFile	2022/9/27 11:27	文件夹			
_	NSM2032_Programmer.aliases	2022/9/27 11:22	ALIASES 文件	1 KB		
<u>_</u>	NSM2032_Programmer.exe	2022/9/27 11:22	应用程序	2,645 KB		
*	NSM2032_Programmer.ini	2022/9/27 11:22	Configuration se	1 KB		

Figure 3. Example of the Software path

Double-clicking name. Exe in the folder NSM2032 _Programmer to run the program to enter the main interface of the software.

3.Software

3.1 Calibration Procedure [NSM2032]

The figure shows the calibration interface of NSM2032. The operation and calibration steps are as follows:

NOVOSNESE CURRENT SENSOR- NSM2032/2033/2020 Programmer	Calibration Flow	MTP Function	
#Communication Checking (green light if success) Config File 2032 Com_Check Initialize Initialize Two Point Voltage Setting #Setting Target Voltage in <i>X Current</i> :	#Voltage Acquisite in Zero Current : Vourto(06)/V 2.51865 #Voltage Acquisite in X Current : Vourto(F5)/V X Current	#Memory program: Write MTP #Communication Disable: Com_Disable	
Vout_High(V) 4.5 #Setting Target Voltage in Zero Current :	Calibration	Single REG Write/Read	
Vout_Low(V) 2.5 Target Sensitivity(mV/G) 21	Vout Measure	REG Data WRITE	
setting success!	E1 V stop All REG	READ Read REG data	

Figure 4. Programmer GUI for NSM2032

NOVOSENSE

3.1.1 Establish communication and initialize device:

The configuration file name is 2032. Clicking the button <u>com_Check</u> to establish communication between Controller Board and device(DUT: NSM2032). If communication is successful, the light button is green and then clickinging <u>linitialize</u> button to Initialize the DUT to get a new device.

3.1.2 Two-point programming voltage setting:

Two-point programming voltage setting: NSM2032 chip programming adopts "two-point calibration". Set the corresponding output voltage Vout_Low(V) at zero current and Vout_High(V) at X current, and set the target sensitivity of the device. For example, if the device needs to output Vout_Low(V) of 2.5V at 0 amps and Vout_High(V) of 3V at 100 amps, and the coupling factors(CF) of the ferromagnetic core used is 1G/A, the Target Sensitivity value can be:

Target Sensitivity =
$$\frac{(\text{Vout}_High - \text{Vout}_Low) / (x - 0)}{CF} = \frac{(3 - 2.5)V / (100 - 0)A}{1G / A} = 5mV / G$$

After the above two steps are completed, enter the calibration process.

3.1.3 Voltage acquisiting at zero current:

Zero current in the system, clicking the button *Zero Current* to acquisiting the zero voltage, and the voltage value is showed as VOUT0(0G).

3.1.4 Voltage acquisiting at zero current: :

X current in the system, clicking the button **X** current to acquisiting the voltage @ X current, and the voltage value is showed as VOUT0(FS).

3.1.5 Calibration:

clicking the button **Calibration** to calibrate the sensitivity of device.

The output voltage of the calibrated device at zero current and X current should be closed to Vout_Low and Vout_High voltages set in Step 2. The output voltage of different magnetic fields or currents can be measured by clicking the button Vout Measure

3.1.6 MTP program:

Clicking the button **Write MTP** write memory of device . MTP can be programmed multiple times.

3.1.7 Communication disable:

Click the button **COM_Disable** to permanently disconnect digital communication with device.

3.2 Calibration Procedure [NSM2033/NSM2020]

The figure shows the calibration interface of NSM2033/NSM2020. The operation and calibration steps are as follows:

Figure 5. Programmer GUI for NSM2033/NSM2020

3.2.1 Establish communication:

The configuration file name is 2033 or 2020. Clicking the button <u>**Com_Check**</u> to establish communication between Controller Board and device(DUT: NSM2033 or NSM2020). If communication is successful, the light button is green.

3.2.2 OCD threshold selection:

NSM2033 and NSM2020 has overcurrent protection function. The range of threshold is 50%~200%FullScale and step is 25%. Clicking the button commons.org OCD_Threshold to set the overcurrent protection threshold, the factory default is 100% FullScale.

3.2.3 Initialize device:

clickinging distribution to Initialize the DUT to get a new device.

3.2.4 Two-point programming voltage setting:

Two-point programming voltage setting: NSM2033 and NSM2020 chip programming adopts "two-point calibration". Set the corresponding output voltage Vout_Low(V) at zero current and Vout_High(V) at X current, and set the target sensitivity of the device. For example, if the device needs to output Vout_Low(V) of 2.5V at 0 amps and Vout_High(V) of 3V at 100 amps, and the coupling factors(CF) of the ferromagnetic core used is 1G/A, the Target Sensitivity value can be:

Target Sensitivity =
$$\frac{(\text{Vout}_High - \text{Vout}_Low) / (x - 0)}{CF} = \frac{(3 - 2.5)V / (100 - 0)A}{1G / A} = 5mV / G$$

After the above two steps are completed, enter the calibration process.

NOVOSENSE

3.2.5 Voltage acquisiting at zero current:

Zero current in the system, clicking the button <a>Zero Current to acquisiting the zero voltage, and the voltage value is showed as VOUT0(0G).

NOVOSENSE

3.2.6 Voltage acquisiting at zero current:

X current in the system, clicking the button **Current** to acquisiting the voltage @ X current, and the voltage value is showed as VOUT0(FS).

3.2.7 Calibration:

clicking the button **Calibration** to calibrate the sensitivity of device. The output voltage of the calibrated device at zero current and X current should be closed to Vout_Low and Vout_High voltages set in Step 2. The output voltage of different magnetic fields or currents can be measured by clicking the button **Vout Measure**.

3.2.8 MTP program:

Clicking the button **Write MTP** to write memory of device . MTP can be programmed multiple times.

3.2.9 Communication disable:

Click the button <u>com_Disable</u> to permanently disconnect digital communication with device.

Note the yellow progress bar on the lower left of the main interface for all the above process.

4.Revision History

Revision	Description	Author	Date
1.0	Initial version	Haijun Cao	15/10/2023

Sales Contact: sales@novosns.com;Further Information: www.novosns.com

IMPORTANT NOTICE

The information given in this document (the "Document") shall in no event be regarded as any warranty or authorization of, express or implied, including but not limited to accuracy, completeness, merchantability, fitness for a particular purpose or infringement of any third party's intellectual property rights.

Users of this Document shall be solely responsible for the use of NOVOSENSE's products and applications, and for the safety thereof. Users shall comply with all laws, regulations and requirements related to NOVOSENSE's products and applications, although information or support related to any application may still be provided by NOVOSENSE.

This Document is provided on an "AS IS" basis, and is intended only for skilled developers designing with NOVOSENSE' products. NOVOSENSE reserves the rights to make corrections, modifications, enhancements, improvements or other changes to the products and services provided without notice. NOVOSENSE authorizes users to use this Document exclusively for the development of relevant applications or systems designed to integrate NOVOSENSE's products. No license to any intellectual property rights of NOVOSENSE is granted by implication or otherwise. Using this Document for any other purpose, or any unauthorized reproduction or display of this Document is strictly prohibited. In no event shall NOVOSENSE be liable for any claims, damages, costs, losses or liabilities arising out of or in connection with this Document or the use of this Document.

For further information on applications, products and technologies, please contact NOVOSENSE (www.novosns.com).

Suzhou NOVOSENSE Microelectronics Co., Ltd