NOVOSENSE

36-V Rail-to-Rail Input/Output, Automotive Operational Amplifier with High Current Output for Resolver Drive

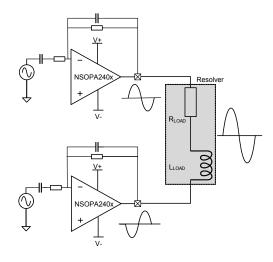
Datasheet (EN) 1.1

Product Overview

The NSOPA2401/NSOPA2402 are single/dual CMOS operational amplifier combined full swing input and output. Current limiting and over temperature detection enhance overall system robustness when driving analog signals over wires that are susceptible to faults.

It outputs typically up to 400mA of peak-to-peak current to drive low resistance load including inductance load such as angle resolver, lineout cable and piezo actuator. In addition, it has enhanced RF noise immunity.

Key Features

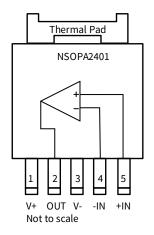

- AEC Q-100 Qualified for Grade 1: T_A from –40 $^{\circ}\text{C}$ to 125 $^{\circ}\text{C}$
- Wide power supply voltage range: 4.5V to 36V
- High output current drive: 400mA continuous, Replaces discrete op amps and transistors
- Output current limit
- Over current alarm (NSOPA2402 only)
- Over temperature shutdown
- Shutdown pin for low I_O application
- 7.5MHz gain bandwidth with 5.5V/μs slew rate
- Internal RF/EMI filter
- Package: 14-pin HTSSOP, 5-pin TO252
- RoHS and REACH compliance

Device Information

Part Number	Package	Body Size
NSOPA2401-Q1TOAR	TO-252-5L	6.54 mm × 6.04mm
NSOPA2402-Q1HTSKR	HTSSOP14	5.00 mm × 4.40 mm

Typical Application

- Resolver-based automative applications
- Inverter and motor control
- Motor driver
- Liner power booster
- Servo drive power stage module



Typical Resolver Excitation Circuit

INDEX

1. PIN CONFIGURATION AND FUNCTIONS	3
2. ABSOLUTE MAXIMUM RATINGS	4
3. ESD RATINGS	4
4. RECOMMENDED OPERATING CONDITIONS	
5. THERMAL INFORMATION	
6. ELECTRICAL CHARACTERISTICS	6
7. TYPICAL PERFORMANCE CHARACTERISTICS	8
8. FUNCTION DESCRIPTION	14
8.1. OVERVIEW	14
8.2. FUNCTIONAL BLOCK DIAGRAM	
8.3. FEATURE DESCRIPTION	15
8.3.1. Pulse Friendly	15
8.3.2. Common-Mode Input Stage	15
8.3.3. EMI Rejection	
8.3.4. Drive Capacitive Load	
8.3.5. Current-Limit and Short-Circuit Protection	
8.3.6. Thermal Protection and OTP/SH_DN Alarm FlagFlag	
8.3.7. Current Limit and OCP Alarm Flag	
8.3.8. Electrical Overstress	19
9. APPLICATION	21
9.1. RESOLVER DRIVER POWER AMPLIFIER POWER DISSIPATION	21
9.2. SAFE OPERATION AREA	23
10. LAYOUT GUIDANCE	24
10.1. GUIDELINES	24
10.2. EXAMPLE	24
10.3. PCB PROCESSING	25
11. PACKAGE INFORMATION	26
11.1. TO-252-5L	26
11.2. HTSSOP14	27
11.3. EXAMPLE OF SOLDER PADS DIMENSIONS	28
12. ORDERING INFORMATION	29
13. DOCUMENTATION SUPPORT	30
14. TAPE AND REEL INFORMATION	31
15. REVISION HISTORY	32

1. Pin Configuration and Functions

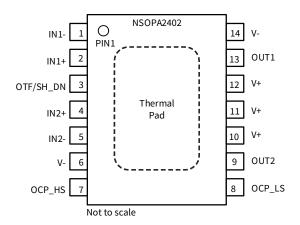


Figure 1-1 NSOPA2401 5-Pin TO252 Package Top View

Figure 1-2 NSOPA2402 14-pin HTSSOP Package Top View

Table 1-1 NSOPA240x Pin Configuration and Description

Symbol	5-Pin TO252	14-Pin HTSSOP	Franchica
Symbol	N	0.	Function
V-	3	6,14	Negative supply pin
IN1+	-	2	Noninverting input terminal 1
IN2+	-	4	Noninverting input terminal 2
IN1-	-	1	Inverting input terminal 1
IN2-	-	5	Inverting input terminal 1
IN+	5	-	Noninverting input terminal
IN-	4	-	Inverting input terminal
OCP_HS	-	7	Over current protection flag
OCP_LS	-	8	Over current protection flag
OTF/SH_DN	-	3	Over temperature flag and shutdown
OUT1	-	13	Amplifier output 1
OUT2	-	9	Amplifier output 2
OUT	2	-	Amplifier output
V+	1	10,11,12	Positive supply pin
Thermal pad	-	-	Connect the thermal pad to (V-) pin internally

2. Absolute Maximum Ratings¹

Parameters	Symbol	Min	Мах	Unit
Supply Voltage	$V_S = (V_+) - (V)$	-0.3	40	V
Differential Input Voltage between IN+ and IN-	V _{ID}		V _s +0.3	V
Common-mode Input Voltage	V _{CM}	(V₋) - 0.3	(V ₊) + 0.3	V
OTF/SH_DN pin, OCP_HS and OCP_LS voltage range	V _{OTF/SH_DN} V _{OCP_HS} V _{OSP_LS}	(V₋) - 0.3	(V.) + 7	\
Input Current	I _{IN}	-10	+10	mA
Output Voltage	Vo	(V₋) - 0.3	(V ₊) + 0.3	V
Junction Temperature	Tj	-40	150	°C
Storage Temperature	T_{stg}	-55	150	°C

3. ESD Ratings

Parameters	Ratings	Value	Unit
Electroptetia Dischause	Human body model (HBM), AEC Q100-002	±3000	V
Electrostatic Discharge	Charged device model (CDM), AEC Q100-011	±2000	V

4. Recommended Operating Conditions

Parameters	Symbol	Min	Max	Unit
Supply Voltage	$V_S = (V_+) - (V)$	4.5	36	V
Flag Pin Voltage		2	5	V
Operating Free-Air Temperature	T _A	-40	125	°C

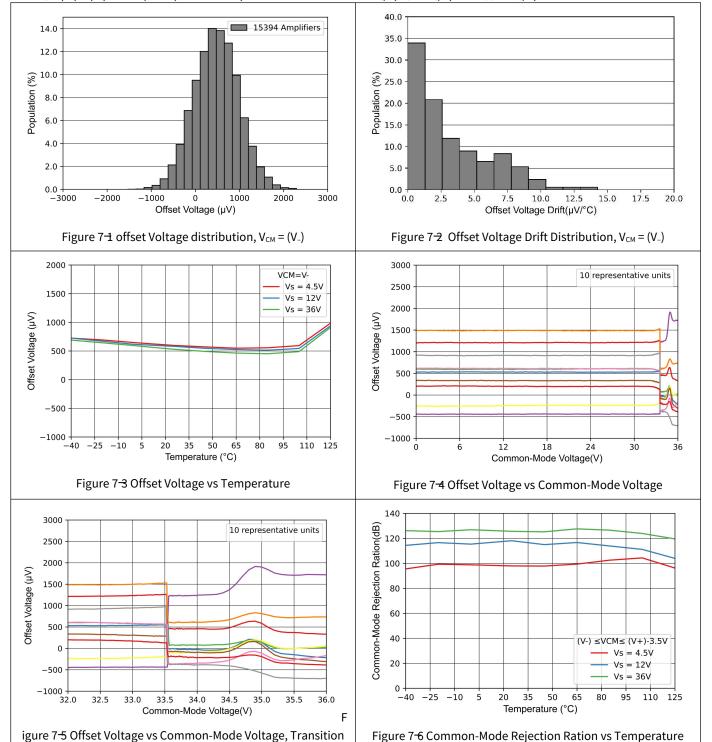
¹ Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability

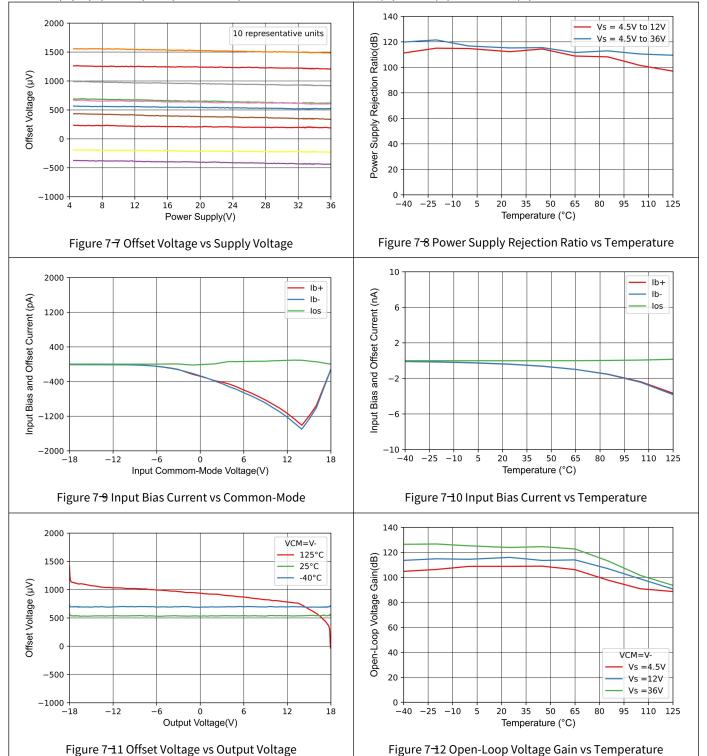
5. Thermal Information

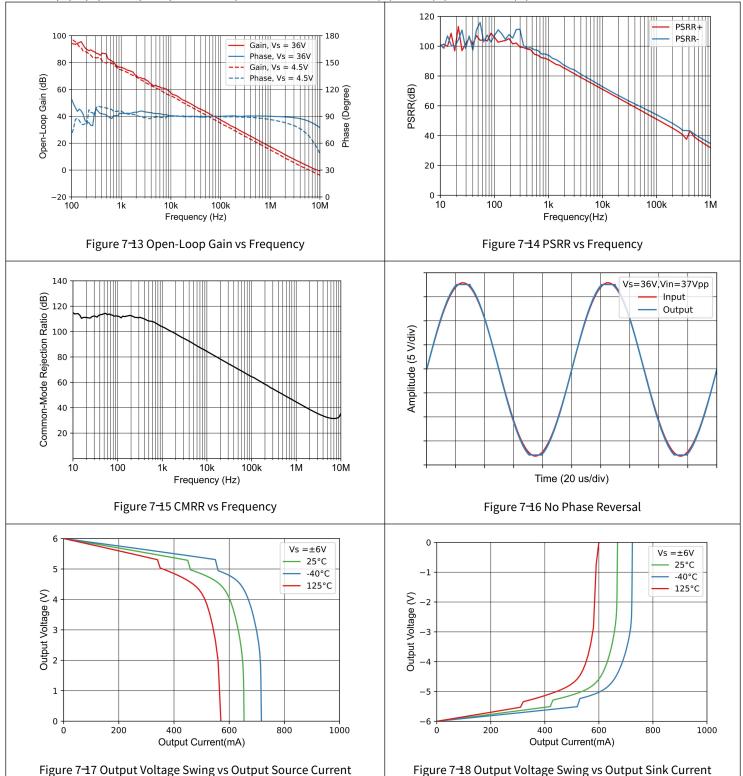
Parameters	Symbol	HTSSOP14	TO-252-5L	Unit
IC Junction-to-Air Thermal Resistance	θ_{JA}	40	35	°C/W
Junction-to-case (top) Thermal Resistance	$\theta_{\text{JC(TOP)}}$	39.9	34.6	°C/W
Junction-to-case (bottom) Thermal Resistance	$\theta_{\text{JC(BOT)}}$	2.2	9.1	°C/W
Junction-to-board Thermal Resistance	θ_{JB}	16.8	12.6	°C/W
Junction-to-top Characterization Parameter	Ψ _{JT}	3.5	6.1	°C/W
Junction-to-board Characterization Parameter	Ψ_{JB}	17.2	12	°C/W

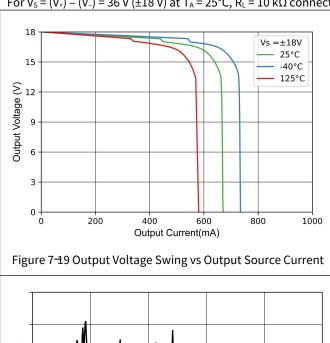
6. Electrical Characteristics

For $V_S = (V_+) - (V_-) = 4.5 V$ to 36 V ($\pm 2.25 V$ to $\pm 18 V$) at $T_A = 25 ^{\circ} C$, $R_L = 10 \text{ k}\Omega$ connected to $V_S/2$, $V_{CM} = V_S/2$, and $V_{OUT} = V_S/2$, unless otherwise noted.


Parameters	Symbol	Condit	ion	Min	Тур	Max	Unit	
Input								
Input Offset Voltage	V	V _{CM} = (V ₋)			±1	±3.8	mV	
input onset voltage	V _{os}	V _{CM} - (V ₋)	T _A = -40°C to 125°C			±4.3	IIIV	
Input Offset Voltage Drift	dV _{os} /dT	T _A = -40°C to 125°C			7		μV/°C	
Common-Mode Input Range	V _{CM}			(V_)		(V ₊)	V	
		$(V_{-}) < V_{CM} < (V_{+}) - 3.5V,$		100	125			
		V _S = 36V	T _A = -40°C to 125°C	90				
Common-Mode Rejection Ratio	CMRR	$(V_{-}) < V_{CM} < (V_{+}) - 3.5V,$		90	117		dB	
Common Mode Rejection Ratio	CMICK	V _S = 12V	T _A = -40°C to 125°C	80			ub l	
		$(V_{-}) < V_{CM} < (V_{+}),$ $V_{S} = 12 \text{ to } 36V$	T _A = -40°C to 125°C	60				
1 18: 6					±500		рА	
Input Bias Current	l _B	T _A =-40°C to 125°C			±10		nA	
Leave to Office to Comment					±100		рА	
Input Offset Current	l _{os}	T _A =-40°C to 125°C			±10		nA	
loon to be a selected as	Z _{ID}	Common-mode			30 4		GΩ pF	
Input Impedance	Z _{ICM}	Differential			0.3 5			
Open-Loop Gain								
		$(V_{-})+0.5V < V_{0} < (V_{+})-0.5V,$		108	125			
Onen leen Veltage Cain	_	V _S = 36V	T _A =-40°C to 125°C	95			dB	
Open-loop Voltage Gain	A _{OL}	$(V_{-})+0.5V < V_{O} < (V_{+})-0.5V,$		106	118			
		V _S = 12V	T _A =-40°C to 125°C	88				
Power Supply								
Operating Voltage Range	Vs			4.5		36	V	
		$V_s = 4.5 \text{ to } 36V, V_{CM} = (V)$		95	113			
Power Supply Pajection Patio	PSRR	V _S = 4.5 to 50V, V _{CM} = (V ₋)	T _A =-40°C to 125°C	85			- dB	
Power Supply Rejection Ratio	FSIKIK	$V_s = 4.5 \text{ to } 12V, V_{CM} = (V)$		95	110			
		v5 - 7.5 to 12 v, vcm - (v-)	T _A =-40°C to 125°C	80				
		$I_{O} = 0A, V_{CM} = (V_{-})$			5.1	8		
Quiescent Current Per Channel	Iq	10 -UM, VCM - (V-)	T _A =-40°C to 125°C			8.8	mA	
		$V_{OTF/SH_DN} = 0V$	T _A =-40°C to 125°C		0.5			


Electrical Characteristics (continued)


For $V_S = (V_+) - (V_-) = 4.5 V$ to 36 V ($\pm 2.25 V$ to $\pm 18 V$) at $T_A = 25 ^{\circ} C$, $R_L = 10 \text{ k}\Omega$ connected to $V_S/2$, $V_{CM} = V_S/2$, and $V_{OUT} = V_S/2$, unless otherwise noted.


Parameters Output	Symbol	Condition			Min	Тур	Мах	Unit
			No load, T _A =	-40°C to 125°C			5	
			1. 100 1			140		1
Voltage output swing from positive rail	Vo	$V_{ID} = 500 \text{mV}$ $V_S = 12 \text{ to } 36 \text{V}$	I ₀ =100mA	T _A =-40°C to 125°C			290	
positive rait		V _S = 12 to 30V	L =200 == A			280		
			I ₀ =200mA	T _A =-40°C to 125°C			540	
			No load, T _A =	-40°C to 125°C			5	mV
		.,	L =100mA			105		
Voltage output swing from negative rail	Vo	$V_{ID} = 500 \text{mV}$ $V_S = 12 \text{ to } 36 \text{V}$	I ₀ =100mA	T _A =-40°C to 125°C			200	
negative rait			1 200 1			210		
			I ₀ =200mA	T _A =-40°C to 125°C			450	
Chart simult summer		Sink, Vs = 36V				630		0
Short-circuit current	I _{sc}	Source, Vs = 36	V			640		mA
Noise (Input Referred)								
In a control to an analysis of a mailer		f = 1kHz				58		V/ /**
Input voltage noise density	e _n	f = 10kHz	f=10kHz			20		nV/\sqrt{Hz}
Input voltage noise	e _{np-p}	f=0.1Hz to 10Hz				20		μVрр
Frequency Response								
Gain-bandwidth product	GBP	V _S =36V, R _L = 10	0Ω			7.5		MHz
Phase margin	PM	G =+1, C _L = 10pF	=			75		degree
Cattlingstings	_	To 0.1% 10V ste	ep, G = +1, C _L = 1	10pF		2.5		
Settling time	t _s	To 0.1% 10V ste	ep, G = -1, C _L = 1	.0pF		2.5		μs
Slew rate	SR	V _S = 36V, G = +1,	,10V step, R _L = 1	100Ω		5.5		V/µs
Total harmonic distortion + noise	THD+N	V ₀ = 10Vpp, G =-	+1, f = 10 kHz, F	R _L = 100 Ω		-95		dB
Overload recovery time		V _{IN} × Gain > V _S				0.65		μs
EMI rejection ratio	EMIRR	f = 1GHz				90		dB
Temperature		1						
Thermal shutdown						173		
Thermal shutdown recovery						155		°C
Flag Pin								
Enable input voltage	V _{IH_OTF}	V _{PULL_UP} = (V-) + 5	5V, R _{PULL_UP} = 2.5	ikΩ	1			
Disable input voltage	V _{IL_OTF}	V _{PULL_UP} = (V-) + 5	5V, R _{PULL_UP} = 2.5	ikΩ			0.3	V
Over temperature and current pin output flag low voltage	V_{OL_Flag}	V _{PULL_UP} = (V-) + 5	5V, R _{PULL_UP} = 2.5	škΩ			0.3	V

7. Typical Performance Characteristics

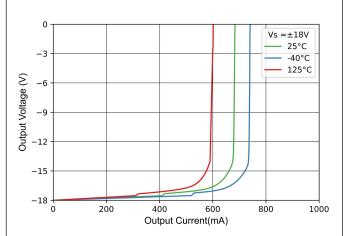
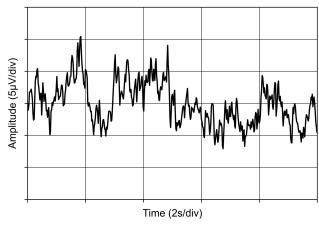



Figure 7-20 Output Voltage Swing vs Output Sink Current

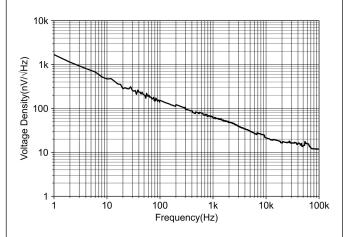
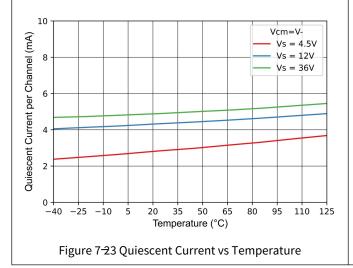



Figure 7-21 0.1 to 10 Hz noise

Figure 7-22 Input Voltage spectral Density

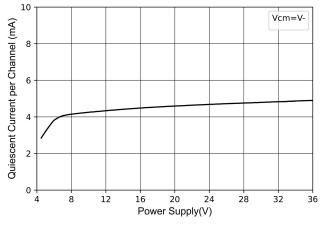
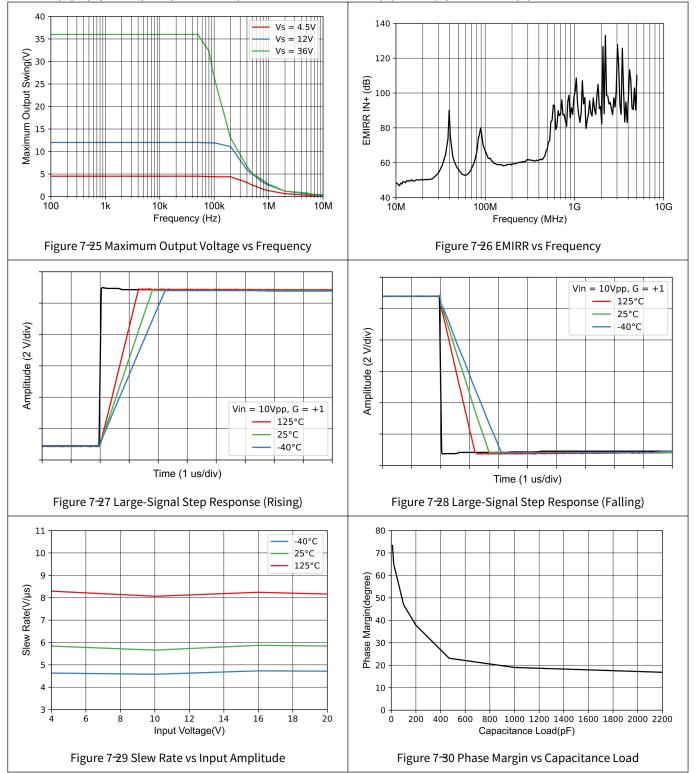
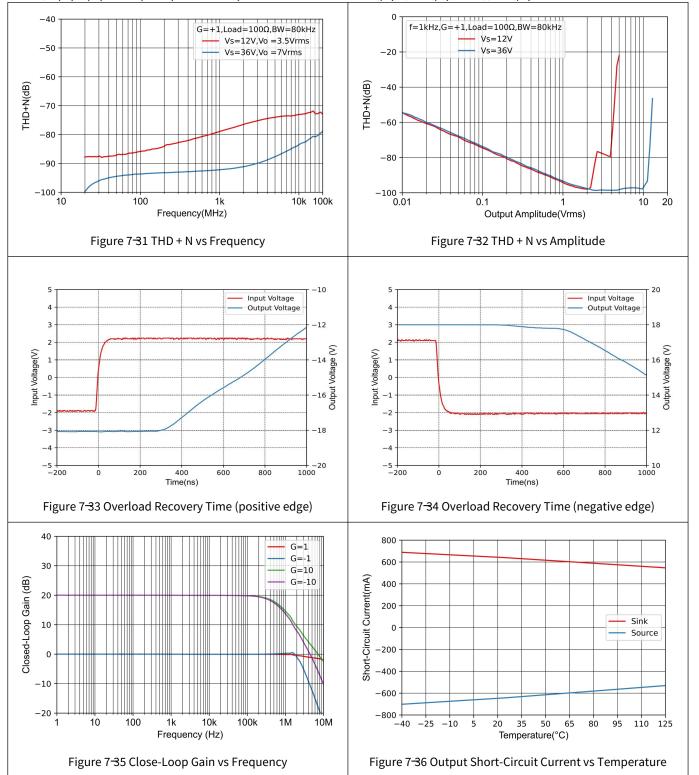




Figure 7-24 Quiescent Current vs Supply Power

8. Function Description

8.1. Overview

NSOPA240x is power op amp which is dedicated for automotive applications. High output current and FPBW capability are the key features. In addition, protection functionality makes it safe in the overtemperature and overcurrent application.

8.2. Functional Block Diagram

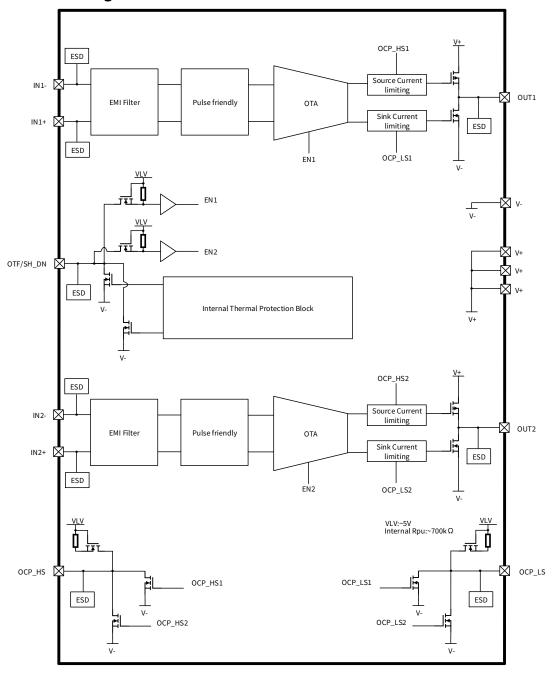
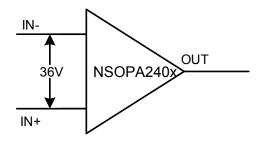


Figure 8-1 NSOPA2402 Functional Block Diagram


8.3. Feature Description

8.3.1. Pulse Friendly

Traditional op amps use back-to-back diode input stages to limit the differential input range. If the device operates in open-loop conditions, once the voltage between the two input pins exceeds the limit voltage, unexpected current will flow into the device and may cause device damage.

Using new input stage topology, NSOPA240x provides full 36V differential input range. when it works in open-loop case, it will not sink large current from source and behave as the comparator for most applications.

A majority of electrical characteristics are verified in negative feedback, closed-loop configurations. Certain dc electrical characteristics, like offset, may have a higher drift across temperature and lifetime when continuously operated in open loop over the lifetime of the device.

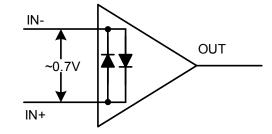


Figure 8-2 NSOPA240x Input Stage

Figure 8-3 Traditional op-amp Input Stage

8.3.2.Common-Mode Input Stage

The NSOPA240x is a 36V true rail-to-rail input op amp with an input common-mode range of 100mV beyond either supply rail. This wide range is achieved by paralleling complementary N-channel and P-channel differential input pairs, as shown in Figure 8-4. N-channel pairs are active when the input voltage is close to the positive supply rail, typically -1 V to 100 mV above the positive supply (V+). The P-channel pair is active over an input range from 100 mV below the negative supply to approximately (V+) -2.5 V. There is a small transition region, typically (V+) -2.5 V to (V+) -1 V, where both input pairs are on. This transition region will vary slightly with process variations, and within this region, PSRR, CMRR, offset voltage, offset drift, noise, and THD performance may be degraded compared to operation outside this region.

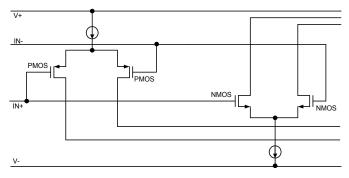


Figure 8-4 NSOPA240x Rail-to-rail Input Stage

8.3.3.EMI Rejection

The NSOPA240x uses integrated electromagnetic interference (EMI) filtering to reduce the impact of EMI from sources such as wireless communications and densely populated circuit boards that mix analog signal chains and digital components. The advantage of NSOPA240x is that EMI immunity can be improved through circuit design technology. Figure 8-5 shows the test results on NSOPA240x.

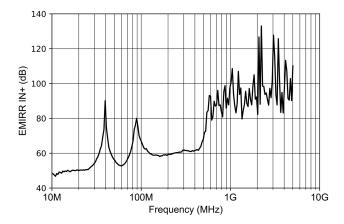


Figure 8-5 NSOPA240x EMIRR vs Frequency

8.3.4. Drive Capacitive Load

The NSOPA240x has a resistive output stage capable of driving moderate capacitive loads, and by utilizing isolation resistors, the device can be easily configured to drive large capacitive loads. The specific op amp circuit configuration, layout, gain, and output loading are important factors in determining whether the amplifier will operate stably Some factors to consider.

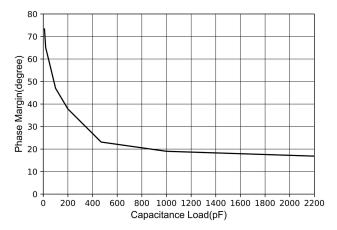


Figure 8-6 NSOPA240x Phase Margin vs Capacitive Load

To obtain additional drive capability in a unity-gain configuration, capacitive load drive can be improved by inserting a small resistor, $R_{\rm ISO}$, in series with the output, as shown in Figure 8-7. This resistor significantly reduces ringing and maintains DC performance under purely capacitive loads. However, if a resistive load is placed in parallel with a capacitive load, a voltage divider is created, which introduces a gain error at the output and slightly reduces the output swing. The error introduced is proportional to the ratio $R_{\rm ISO}/R_L$ and is usually negligible at low voltage output levels.

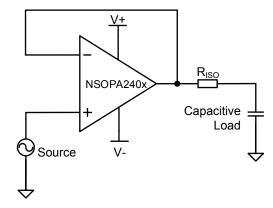


Figure 8-7 Insert isolation Resistor to drive large Capacitive Load

8.3.5. Current-Limit and Short-Circuit Protection

NSOPA240x has separate internal current limiting for the PMOS (high-side) and NMOS (low-side) output transistors.

If the output is shorted to ground, then the PMOS (high-side) current limit is activated, and limits the current to about 550 mA. OCP_HS pin (pin7 of NSOPA2402) goes low to alert that the high side current-limit event occurs, and released after current-limit has removed. If the output is shorted to supply, then the NMOS (low-side) current limit is activated and limits the current to about 550 mA. OCP_LS pin (pin 8 of NSOPA2402) goes low to alert that the low side current-limit event occurs, and released after current-limit has removed.

The OCP pins can be monitored to determine if the device is in current limit state. Pull-up resistors not less than $2k\Omega$ are needed because of its open-drain structure. These pins can be floating configuration if this function is not used.

When current is limited, the safe limits for the die temperature must be taken in to account. With too much power dissipation, the die temperature can surpass thermal shutdown limits; the op amp shuts down and reactivates after the die has fallen below thermal limits.

8.3.6. Thermal Protection and OTP/SH_DN Alarm Flag

The internal power dissipation of any amplifier causes its internal (junction) temperature to rise. This phenomenon is called self-heating. The absolute maximum junction temperature of the NSOPA240x is 150°C. Exceeding this temperature may damage the device. The NSOPA240x features thermal protection to reduce damage caused by self-heating. This protection is achieved by monitoring the device temperature and turning off the op amp output drive when the temperature is above 173°C.

Figure 8-8 shows how the circuit behaves during thermal protection. During normal operation, the device acts as a buffer so the output is 10V. When self-heating causes the device junction temperature to rise above internal limits, thermal protection forces the output into a high-impedance state and pulls the output to ground through resistor R_L.

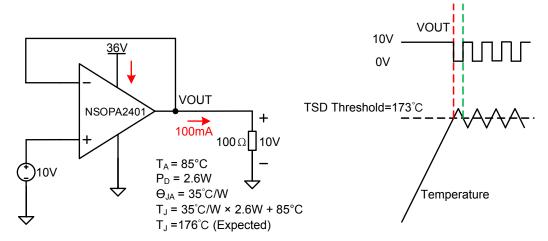


Figure 8-8 Thermal Shut Down and Recovery

If the die temperature exceeds safe limits, all outputs are disabled, and OTF/SH_DN pin (pin3 of NSOPA2402) is driven low. After the die temperature has fallen to a safe level, operation automatically resumes. The OTF/SH_DN pin is released after operation has resumed. OTF/SH_DN pin is bidirectional that allows both op amps to be put into a low IQ state when forced low.

As a result of this pin being bidirectional, and the respective enable and disable functionality, this pin must be pulled high through a pull up resistor not less than $2k\Omega$ (Although the chip has internal weak pull-up resistor, it is strongly recommended to use external strongly pull-up resistor)

CAUTION

Do not continuously operate the device in thermal hysteresis for long periods of time because this action may cause irreversible damage to the device.

8.3.7. Current Limit and OCP Alarm Flag

NSOPA240X has internal current limit functionality to protect device in case of overcurrent event. Once the OCP function is trigged, current limit will be valid and limit the output current when the current reaches 400mA.

The pin 7 and 8 of NSOPA2402 are designed for the over-current protect (OCP) function. Corresponding to traditional class A-B output stage of NSOPA2402, pin 7(OCP_HS) and pin 8 (OCP_LS) can be trigged independently to indicated where the overcurrent event locates. When the output current exceeds the limit (~400mA typ), these pins go low to alert that the output-current event occurs. OCP_HS pin goes low means over current event occurs in the high side of output stage. OCP_LS pin goes low means over current event occurs in the low side of output stage.

OCP pins are only output pin used to detecting the internal overcurrent status. If customer need this function, pull-up resistor not less than $2k\Omega$ is installed because of its open-drain structure. In addition, it can be floating configuration if customer do not need this functionality.

8.3.8. Electrical Overstress

Always, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly.

Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is helpful. Figure 8-9 shows an illustration of the ESD circuits contained in the NSOPA240x (indicated by the dotted area area). The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device or the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.

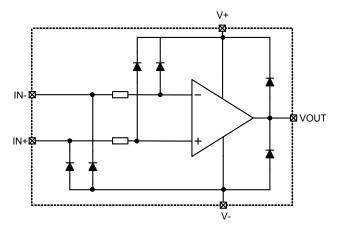


Figure 8-9 Internal ESD Equipment Model

Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress (EOS). These questions tend to focus on the device inputs but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.

Electrostatic Discharge (ESD) is defined the transfer of electrostatic charge between bodies or surfaces at different electrostatic potential. ESD is regarded as a high voltage(kV), short duration event(1-100ns). Besides, it is fast edges and lower power event.

But unlike ESD problems, EOS is another common device problem. Electrical Over Stress (EOS) is defined the exposure of an item to current or voltage beyond its maximum ratings.

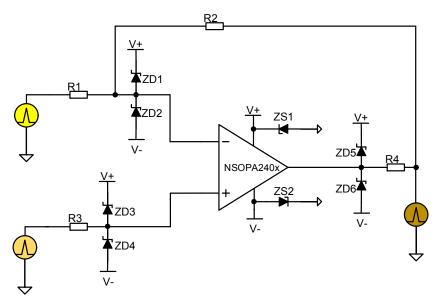


Figure 8-10 External Component to Enhance EOS Performance

Figure 8-10 shows how to use external components to enhance the circuitry robustness.

- 1. SDx are small signal Schottky diodes. Using power Schottky for power operational amplifier. Diodes limits EOS Voltage to [(V+) +0.3V] or [(V-)-0.3V].
- 2. ZS1 and ZS2 are Zener diodes or unipolar semiconductor Transient Voltage Suppressors (TVS). They prevent device supply overvoltage, provide reverse polarity protection, and provide a current path for Iq if one supply floats.
- 3. R1, R2 limit current through SD1, SD2.
- 4. R3 limits current through SD3, SD4.
- 5. R4 limits current through SD5, SD6.R4 is inside the feedback loop adding little error at output voltage.
- 6. Check Absolute Maximum Ratings before using NSOPA240x and never violate the Absolute Maximum Ratings.

9. Application

9.1. Resolver Driver Power Amplifier Power Dissipation

NSOPA240x is designed to drive resolver in automative applications. It's recommended to use differential mode. Because of the relatively low impedance of the resolver and the large VCC voltage, it is important to estimate temperature of device. The dissipation power is determined by the type of loads. Always, the typical resolver can be regarded as resistive and inductance load.

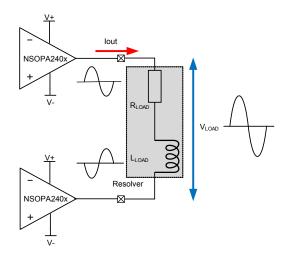


Figure 9-1 Equivalent Circuit for Calculating Power Supply Current

The dissipation power of the amp (P_{AMP}) is calculated by subtracting the power dissipated in the load (P_{LOAD}) , from the power supply (P_{SUPPLY})

$$P_{AMP} = P_{SUPPLY} - P_{LOAD}$$

The equivalent load impedance of the resolver rotor winding is equal to:

$$Z = R + jX_L$$

where $XL = \omega L$

The magnitude of the impedance is:

$$|Z| = \sqrt{R^2 + X_L^2}$$

The signal applied to the rotor winding is $v(t) = A \sin \omega t$, The rms voltage applied to Z is $V = A/\sqrt{2}$. The rms current through Z is given by:

$$I = \frac{V}{|Z|} = \frac{A/\sqrt{2}}{|Z|}$$

the power dissipated in the load is:

$$P_{LOAD} = V * I * \cos \theta = \frac{A^2}{2 * |Z|} * \frac{R}{|Z|}$$

Where $\cos \theta = \frac{R}{|Z|}$ is the power factor.

The average current from the supply is:

$$I_{AVG} = \frac{I_{PEAK}}{\pi} = \frac{A}{\pi * |Z|}$$

Because this current must be supplied by each rail,

$$P_{SUPPLY} = 2 * V_{SUPPLY} * I_{AVG} = V_{SUPPLY} * \frac{A}{\pi * |Z|}$$

We can now calculate P_{AMP} :

$$\begin{split} P_{AMP} &= P_{SUPPLY} - P_{LOAD} \\ &= (2 * V_{SUPPLY} * \frac{A}{\pi * |Z|}) - (\frac{A^2}{2 * |Z|} * \frac{R}{|Z|}) \end{split}$$

When using Tamagawa TS2620N21E11 resolver, the impedance is 70 Ω +j100 Ω at 10 kHz. In the typical use case (VCC = 12 V, A = 10 V).

Calculating the power dissipation by using the derived equation:

$$P_{AMP} = (2 * V_{SUPPLY} * \frac{A}{\pi * |Z|}) - (\frac{A^2}{2 * |Z|} * \frac{R}{|Z|})$$

$$= (2 * 12V * \frac{10V}{\pi * 122\Omega}) - (\frac{10V^2}{2 * 122\Omega} * \frac{70\Omega}{122\Omega}) = 0.39w$$

when NSOPA2402 is adopted, the thermal resistance to ambient (θ_{JA}) of NSOPA2402 (HTSSOP14) is 40°C/W and therefore the junction temperature rise above ambient is:

$$\Delta t = 40^{\circ} \text{C/W} \times 0.39 \text{W} = 15.6^{\circ} \text{C}$$

when two NSOPA2401 are adopted, the thermal resistance to ambient (θ_{JA}) of NSOPA2401 (TO-252-5L) is 35°C/W and therefore the junction temperature rise above ambient is:

$$\Delta t = 35^{\circ} C/W \times \frac{0.39W}{2} = 6.8^{\circ} C$$

9.2. Safe Operation Area

Stress on the output transistors is determined both by the output current and by the output voltage across the conducting output transistors, VS - VO. The power dissipated by the output transistor is equal to the product of the output current and the voltage across the conducting transistor, $V_S - V_O$.

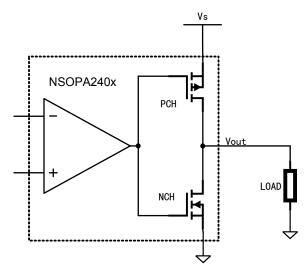


Figure 9-2 Simple Power Amplifier Circuit

The maximum operating junction temperature is recommended to exceed 150 degrees, so we derive maximum dissipate power under given conditions.

$$T_I(max) = T_A + p_D \times R_{\theta IA} #1$$

The Safe Operating Area (SOA curve, Figure 9-3) illustrates the permissible range of voltage and current.

The curves shown represent devices soldered to a printed circuit board (PCB) with no heat sink (JEDEC standard).

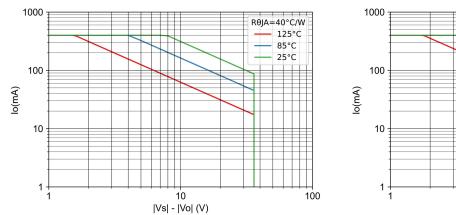


Figure 9-3 HTSSOP14 SOA Curve

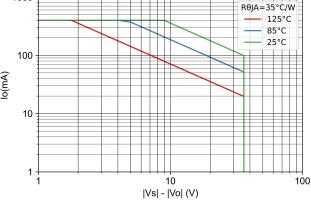


Figure 9-4 TO252 SOA Curve

Increasing printed circuit trace area or the use of a heat sink can significantly reduce thermal resistance, resulting in increased output current for a given output voltage.

The safe output current decreases as $V_s - V_0$ increases. Output short-circuits are a very demanding case for SOA. This exceeds the maximum rating and is not recommended. If operation in this region is unavoidable, a heat sink is required.

10. Layout Guidance

10.1. Guidelines

Poor op amp PCB layout will deteriorate the chip parameters, or even worse, cause it to work abnormally. For better performance, some tips should be considered.

- Noise can propagate into the analog circuitry through the board's power connections and to the power pins of the op amp itself. Bypass capacitors are used to reduce coupled noise by providing a low impedance path to ground.
- Connect a low ESR 0.1μF ceramic bypass capacitor between each supply pin and ground as close to the device as possible. A single bypass capacitor from V+ to ground is sufficient for single-supply applications.
- To reduce parasitic coupling, keep input traces as far away from power supply or output traces as possible. If these traces cannot be kept separate, route them at a 90-degree angle

It's much better to run overly sensitive traces than to run traces parallel to noisy traces.

- External components should be located as close to the device as possible, as shown in following figure. Keeping RF and RG close to the inverting input minimizes parasitic capacitance.
- Keep input traces as short as possible. Remember, the input traces are the most sensitive parts of the circuit.
- For best performance, cleaning is recommended after PCB board assembly.

10.2. Example

A single channel is shown as follow. The rest channels should be handled with identical way but not shown in the figure.

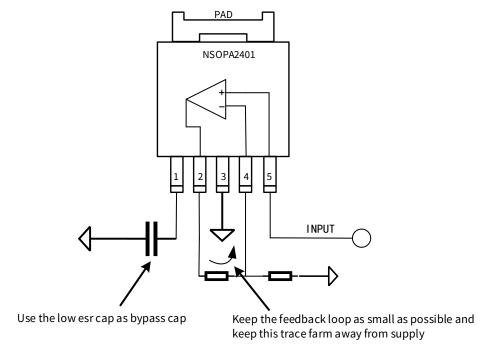


Figure 10-1 Layout example

10.3. PCB processing

The following recommendations can be used as guidelines for designing PCB for thermal testing or functional evaluation.

- Connect thermal Pad to V- net
- Use large and multi-layer PCB boards (at least 4 layers) if possible.
- When connecting these holes to the ground plane, do not use the typical web or spoke via connection methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat transfer during soldering operations. This makes the soldering of vias that have plane connections easier. However, in this application, low thermal resistance is desired for the most efficient heat transfer.
- It is recommended, but not required, to place a small number of the holes under the package, but outside the thermal pad area. These holes provide additional heat path between the copper land and ground plane and are 25 mils in diameter. They may be larger because they are not in the area to be soldered, so wicking is not a problem. This is illustrated in Figure 10-3
- Use the heat sink if possible.

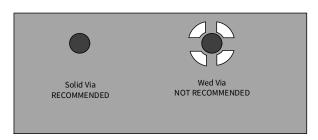


Figure 10-2 Via Style

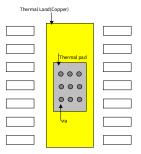
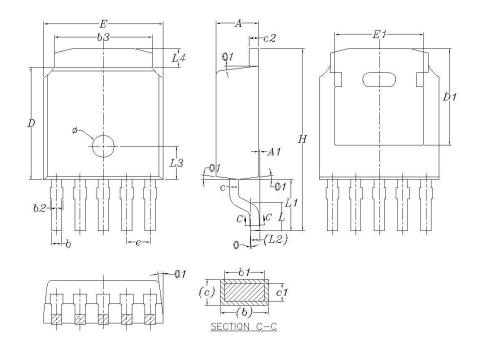
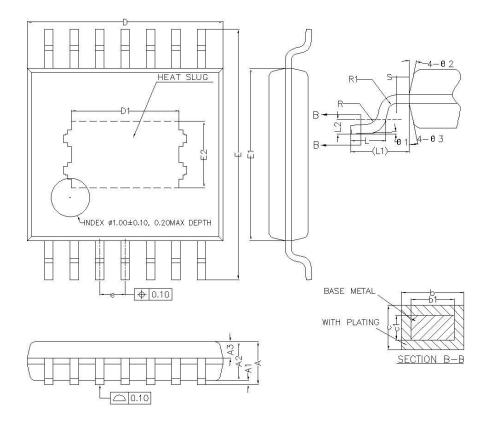
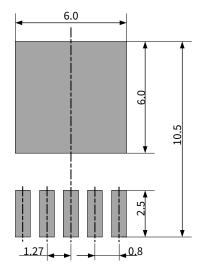
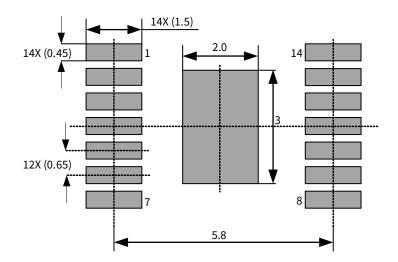



Figure 10-3 Via and Thermal land


11. Package Information

11.1. TO-252-5L


Symbol	Dimensions I	n Millimeters	Dimensior	ns In Inches
	Min	Max	Min	Max
Α	2.184	2.387	0.0860	0.0940
A1	0.000	0.127	0.0000	0.0050
A2	1.450	1.850	0.0571	0.0728
b	0.508	0.711	0.0200	0.0280
b1	0.508	0.660	0.0200	0.0260
b2	0.610	0.787	0.0240	0.0310
b3	5.184	5.461	0.2041	0.2150
С	0.460	0.610	0.0181	0.0240
c1	0.406	0.559	0.0160	0.0220
c2	0.460	0.610	0.0181	0.0240
D	6.000	6.223	0.2362	0.2450
D1	5.050	/	0.1988	/
E	6.350	6.731	0.2500	0.2650
E1	4.318	/	0.1700	/
е	1.170	1.370	0.0461	0.0539
Н	9.500	10.300	0.3740	0.4055
L	1.397	1.778	0.0550	0.0700
L1	2.400	3.000	0.0945	0.1181
L2	0.508 REF		0.02	0 REF
L3	1.600	2.000	0.0630	0.0787
L4	0.889	1.270	0.0350	0.0500
θ	0°	10°	0°	10°
θ1	0°	15°	0°	15°
Ф	1.05	1.35	0.0413	0.0531


11.2. HTSSOP14

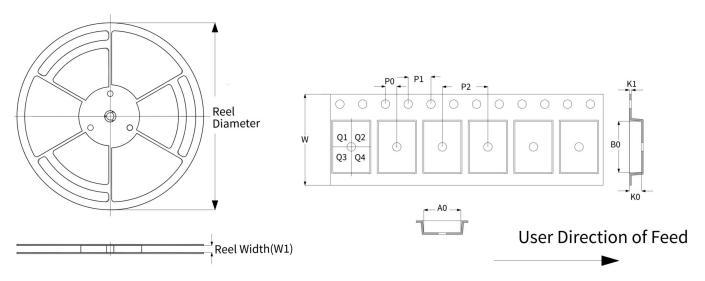
Symbol	Dimensions I	n Millimeters	Dimensior	ns In Inches
	Min	Max	Min	Max
Α		1.20		0.0472
A1	0.05	0.15	0.0020	0.0059
A2	0.90	1.05	0.0354	0.0413
A3	0.32	0.52	0.0126	0.0205
b	0.20	0.29	0.0079	0.0114
b1	0.19	0.25	0.0075	0.0098
С	0.15	0.20	0.0059	0.0079
c1	0.14	0.16	0.0055	0.0063
D	4.90	5.10	0.1929	0.2008
D1	2.65	2.85	0.1043	0.1122
E	6.20	6.60	0.2441	0.2598
E1	4.30	4.50	0.1693	0.1772
E2	1.60	1.80	0.0630	0.0709
е	0.55	0.75	0.0217	0.0295
L	0.45	0.75	0.0177	0.0295
L1		1.00	REF	
L2		0.25	BSC	
R	0.09		0.0035	
R1	0.09		0.0035	
S	0.20		0.0079	
θ1	0°	8°	0°	8°
θ2	10°	14°	10°	14°
θ3	10°	14°	10°	14°

11.3. Example of Solder Pads Dimensions

Note:

1. Unit: mm.

12. Ordering Information


Part Number	Package	MSL Level	Op Temp (°C)	SPQ
NSOPA2401-Q1TOAR	TO-252-5L	3	-40~+125	2000
NSOPA2402-Q1HTSKR	HTSSOP (14)	1	-40~+125	4000

Note: All packages are ROHS compliant with peak reflow temperature of 260°C according to the JEDEC industry standard classifications and peak solder temperature.

13. Documentation Support

Part Number	Product Folder	Datasheet	Technical Documents
NSOPA2401-Q1TOAR			
NSOPA2402-Q1HTSKR			

14. Tape and Reel Information

Device	Reel Diameter	Reel Width(W1)	W	AO	ВО	P0	P1	P2	КО	K1	PIN1 Quadrant
NSOPA2401-Q1TOAR	330	24.4	24	6.9	10.5	2.0	4.0	4.0	1.4	2.9	Q2
NSOPA2402-Q1HTSKR	330	12.4	12.0	6.85	5.45	2.0	4.0	8.0	1.6	0.3	Q1

Note:

- 2. All dimensions are nominal.
- 3. The picture is only for reference. Please make the object as the standard.
- 4. Unit: mm.

15. Revision History

Revision	Description	Date
1.0	Initial Version.	2024/7/5
1.1	Add example of solder pads dimensions Add reflow note in order information table	2024/08

IMPORTANT NOTICE

The information given in this document (the "Document") shall in no event be regarded as any warranty or authorization of, express or implied, including but not limited to accuracy, completeness, merchantability, fitness for a particular purpose or infringement of any third party's intellectual property rights.

Users of this Document shall be solely responsible for the use of NOVOSENSE's products and applications, and for the safety thereof. Users shall comply with all laws, regulations and requirements related to NOVOSENSE's products and applications, although information or support related to any application may still be provided by NOVOSENSE.

This Document is provided on an "AS IS" basis, and is intended only for skilled developers designing with NOVOSENSE's products. NOVOSENSE reserves the rights to make corrections, modifications, enhancements, improvements or other changes to the products and services provided without notice. NOVOSENSE authorizes users to use this Document exclusively for the development of relevant applications or systems designed to integrate NOVOSENSE's products. No license to any intellectual property rights of NOVOSENSE is granted by implication or otherwise. Using this Document for any other purpose, or any unauthorized reproduction or display of this Document is strictly prohibited. In no event shall NOVOSENSE be liable for any claims, damages, costs, losses or liabilities arising out of or in connection with this Document or the use of this Document.

For further information on applications, products and technologies, please contact NOVOSENSE (www.novosns.com).

Suzhou NOVOSENSE Microelectronics Co., Ltd